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Abstract

The recent successful generation of flat electron beams by Edwards, et al.,[1], spurred by
the proposition set forth by Derbenev, Brinkmann, and Flottmann,[2] leads to the anticipation
of very bright electron sources for use in a future linear collider. Horizontal-vertical emittance
ratios of 100:1 or better have been generated at Fermilab. The emittances achieved are within
a factor of two of the linear collider emittance specifications, though at a lower beam intensity.
To make further improvements in overall beam brightness, a reduction in the final horizontal
emittance clearly would be beneficial. The present proposition is to generate a spiral pattern
onto a photo-cathode and pass the resulting beam through a flat-beam transformation. While
the vertical phase space area becomes very small, the horizontal phase space will result in a
corresponding spiral pattern. Using a magnetic focusing channel with suitable non-linear fields,
this spiral pattern can be “unwound” in order to group the particles into a smaller region of
horizontal phase space. While space charge effects at the cathode still need to be addressed, the
possibility of small and flat beams exists. Increases in overall beam brightness by factors of 5
or so may be possible.

1 Review of Flat Beam Generation

The principle behind the “flat beam transformation” 2] is to generate a beam of particles submerged
in a solenoidal magnetic field, initially all traveling parallel to the field direction which. Upon exit
of the solenoid, the beam acquires angular momentum about the solenoid axis. After a suitable
transformation using skew quadrupoles, the vertical trajectories of all the particles in the “ideal”
beam become identical (zero vertical phase space emittance) and the horizontal phase space will be
defined by the original physical spot size within the solenoid. Below we illustrate the process using
a simple beam transformation as an example. In the original Fermilab demonstration experiment
the optical system used three quadrupoles to generate appropriate phase advance in each degree of
freedom and eventually acquired emittance ratios of 100:1.[3]



1.1 The Transformation

To see how the flat beam transformation works, imagine an electron being generated on a cathode
surface and emerging with trajectory
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where the transverse dimensions are relative to an ideal trajectory along the axis of symmetry of a
solenoid field. Upon exit of the solenoid, the trajectory will be transformed according to
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where k = Bs/2(Bp), Bs is the central field value of the solenoid, and Bp = p/e is the particle’s
magnetic rigidity. The particle next enters a focusing section, which has been rotated by 45°, i.e.,
made of skew quadrupoles. The section has a “vertical” transformation which is 90° out of phase
with the “horziontal” transformation. For simplicity, assume the “horizontal” transformation is
unity, while the “vertical” transformation has a phase advance of 90°, and a periodic amplitude
function By = 1/k. In matrix form, the total transformation is
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corresponding to the unrotated FODO channel described above. Carrying out the matrix multipli-
cations, we arrive at the trajectory leaving the rotated FODO channel:
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From the last relationship we see that the particle will lie on a circle of radius r. = v/2 rq in z, 2 /k
phase space, and will lie at an angle 6. in this phase space, where 6, = 6y + 7/4. The result is
illustrated in Figure 1. Naturally, a realistic beam will have a thermal emittance as it emerges from
the cathode and so the vertical emittance will not be zero and there will be a thermal “noise” term
to include in the horizontal phase space coordinates. For this discussion the thermal emittance will
be ignored.
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Figure 1: A particle emerging from the solenoid with real-space coordinates rq, fy will end up with
zero vertical emittance and a horizontal phase space coordinate of v/2 7o, 8y + 7 /4.

1.2 Resulting rms Emittance from Uniform Cathode Illumination

Consider an ideal initial distribution of particles traveling parallel to the central solenoid field and
uniformly distributed transversely within a radius a/v/2 of the central axis. Following the “flat
beam transformer” the resulting horizontal phase space distribution will be uniform within a circle
of radius a and will have variance

ol = (2?) = %(r?) = ;/Oarzrdr/ /Oardr = (1/2)(a"/4)/(a?/2) = a*/4.

The rms emittance would thus be € = 7wa?/483y = wka?/4. This result may be of use later in this
document for comparisons.

2 Reducing the Horizontal Phase Space

In our above model of a perfect flat beam transformer the resulting vertical and horizontal emit-
tances are €, = 0 and €, = Tha®/4. We would like to develop a smaller horizontal emittance. One
possible method is to form a spiral pattern in the transverse dimensions at the cathode, within the
solenoid field, which results in a spiral pattern in the horizontal phase space after the flat beam
transformer. Then, by a suitable beam transport channel with nonlinear fields, the spiral pattern
can be “unwound” to form a final distribution of lesser overall extent in phase space due to the
amplitude dependence of phase advance through the nonlinear system. This is, in a sense, the
time reversal of the emittance dilution generated by a steering error upon injection into a nonlinear
periodic lattice.



2.1 Transforming a Spiral Pattern into Horizontal Phase Space

From the result of Subsection 1.1, a spiral pattern formed at the cathode, say, with particles
traveling parallel to the solenoid field, will upon passing through the flat beam transformer result
in a similar spiral pattern in the horizontal phase space, scaled by a factor of v/2 and rotated by an
angle of 45°. This is illustrated in Figure 2. By a suitable choice of spiral pattern, and a focusing

Figure 2: A spiral pattern emerging from the solenoid will obtain zero vertical emittance and a
spiral horizontal phase space pattern of rotated by an angle of /4 and scaled by v/2.

channel with appropriate nonlinear fields, the spiral pattern can be transformed into a straight line
in phase space.

2.2 Unrolling the Spiral Phase Space

We wish to have our spiral phase space pattern be the initial condition at the entrance to a nonlinear
focusing channel. Imagine a FODO lattice which contains along its length a systematic nonlinear
field which generates an amplitude dependent transverse phase advance, such as that produced by
a series of octupoles. The phase advance 1, or more specifically, the tune v = 1 /27 would vary like

V=1 + 1/”7“2

where 1 is the zero amplitude tune of a single FODO cell. The non-linear de-tuning coefficient is
given by[5]
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where ﬁ is the amplitude function at the point corresponding to amplitude r above, and ((s) is the
amplitude function which varies over the octupole field found within each FODO cell of length /.



If we choose an initial phase space pattern beginning at radius r; and spiraling through an
angle of 27 radians into radius ro, then the tune difference between the points at each end of the

pattern would be
Av =1V"(r3 —rd).

After N ~ 1/Av FODO cells, the two end points would lie along a single radius in phase space.
To ensure that all points along the spiral pattern will lie along the same radius after N cells, we
may choose
rog~ 0y, or, v~#f

for our initial phase space distribution.

2.3 A Numerical Example

As a simple example, consider an initial phase space distribution which is an infinitesimally thin
spiral of functional form
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in arbitrary units of length. The “tune spread” of the distribution is Av =v"(1 —1/2) =v"/2. If
we choose v/ = 0.1 as an example, then it would take 20 FODO cells for the spiral to turn into a
straight line of length Ar =1 — 1/4/2 = 0.29 in our phase space.

Figure 3 shows the result of a simple simulation of the process. In (a) the phase space pattern
is given by Eq. 5. The distribution evolves through the FODO channel until, 20 cells later, we
arrive at (d), where the phase space is a straight line of length 0.29.

2.4 Estimate of Resulting Emittance

The next step in the process would be to use steering elements to center the resulting beam onto the
design trajectory of the downstream beam line. If we imagine further nonlinearities, which must
be present in any real system, then we would expect our “line” distribution to begin to filament
into a final distribution which is cylindrically symmetric in phase space, as depicted in Figure 4.
Thus, the final distribution would have a variance given by
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or, o, = 0.204Ar. For Ar =1 —1/v/2, 0, = 0.06, which is borne out by the simulation. One can
imagine giving the initial curve a “thickness” by adding random displacements with rms § in x and
2’ /k to points along the spiral. The final rms size in our example would then be

op = 1/(0.06)% + 62.

If for example the curve had “thickness” 2§ ~ 0.2 (20% of the final amplitude of the spiral), then
the resulting rms would be ¢, = 0.12, or a final variance of 0.014. This is depicted in Figure 5.
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Figure 3: Development of phase space distribution through a nonlinear FODO channel. (a) Initial
spiral distribution. (b) After 10 FODO cells with v = 0.1. (c¢) After 15 cells. (d) After 20 cells.
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Figure 4: Continuation of phase space evolution. (a) After the 20-cell channel. (b) Recentering
using steering elements. (c) After final filamentation.
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Figure 5: (a) Initial spiral pattern, with random “thickness” 26 = 0.2. (b) After 10 cells. (c) After
20 cells. (d) After centering, and final filamentation; o, = 0.014, as discussed in the text.



Taking this particular example one step further, we estimate the expected beam intensity under
the “ideal” conditions of our present analysis. With zero vertical emittance, the intensity might be
expected to be proportional to the horizontal phase space area. Taking our spiral pattern given in
Eq. 5, the arc length of the spiral is
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For an average thickness of 0.2 unit the area of this pattern would be approximately 27(0.75)(0.2) =
0.37 sq. units. This is to be compared with an initial distribution which is uniform out to radius
1 unit, which has area 7 sq. units. Thus, the spiral pattern would have about 1/3 the intensity
of the uniform circular distribution. However, the former pattern would produce a beam, after
flattening and unwinding, with variance of 0.014 sq. units, while the latter would have variance
0.25 sq. units. Thus, though the intensity is less, the beam brightness is enhanced by a factor of
(0.3/0.014)/(1.0/0.25) =~ 5.

3 A Nonlinear FODO Channel

Suppose the nonlinear tune shift is generated by octupoles situated between the quadrupoles of
a FODO channel. If the amplitude of the motion through the channel is a at the focusing quad
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locations (where ((s) = ), then the de-tuning term through the channel given by Eq. 4 can be

written as .
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where By is the pole tip field of the octupole magnets of total length ¢, within each complete cell,
and R is the pole tip radius.

To set the scale of a device to generate a small emittance flat beam, we consider parameters
close to those of the Fermilab A0/FNPL photo-injector and beam line. Consider an electron with
momentum 15 MeV /¢ entering our FODO channel. The beam size leaving the Fermilab solenoid
is on the scale of 5 mm or less. Suppose we let the channel be approximately 1-2 m long in total,
and made up of 20 cells, each with a zero amplitude tune of 1/4. The amplitude function at the
focusing magnets would be 3 ~ 0.085-0.17 m. For 15 Mev/c electrons, Bp = 0.05 T-m and so for
a solenoid field of strength 0.1 T, as in the Fermilab set-up, we have fy = 1 m. (An appropriate
optical matching section is required between the solenoid and the channel.) Pole tip fields of about
0.5-1.0 T at a radius of R ~ 10 mm, easily obtainable with permanent magnet materials, could be
used.[6]

As a numerical example, Table 1 provides a list of general parameters for a 1.4 m long non-
linear FODO channel for a 15 MeV electron beam. The channel is made up of magnetic elements
with fields less than 1 T, which could presumably use permanent magnet technology. The 5 mm
spiral at the solenoid becomes a 1.7 mm spiral at the entrance to the channel, and the magnet pole



tip radius is taken to be about twice that. The maximum pole tip field in the device is about 0.5 T

in the octupole magnets and 0.75 T in the quadrupole magnets.

Parameter Value | Unit Note
SOURCE

De = 0.015 | GeV/c | electron momentum
Bp = 50.0 | T-mm | magnetic rigidity

B = 01T solenoid field strength

k= 1.0 | 1/m coupling strength

By = 1.0 | m characteristic amplitude function

ag = 5 | mm outer spiral amplitude at solenoid

QUADS
Neelis = 20 Number of cells in channel
= 35 | mm half-cell length

F = 24.7 | mm focal length

B = 0.12 | m maximum cell amplitude function

a = 1.7 | mm outer spiral amplitude @ F quad

R, = 3 | mm quad pole tip radius

£y = 8 | mm quad length

B = 250 | T/m quad gradient

B, = 0.76 | T quad pole tip field

V= 0.25 cell tune

Liotal = 1.400 | m total channel length
OCTUPOLES

R, = 3 | mm octupole pole tip radius

ly = 20 | mm octupole length [¢, = (L — £,) - 0.75]
B, = 0.46 | T octupole pole tip field

V' = 0.0337 | 1/mm?

r = 1.2 | mm inner spiral radius in FODO, QF quad
ro = 1.7 | mm outer spiral radius in FODO, QF quad
Av = 0.050 tune spread across spiral

Ncells -Av = 1.0

Table 1: Example parameters of a 1.4 m long 20-cell non-linear FODO channel.

While the above discussion is simplistic in its approach, with effects such as space charge
not taken into account, it does provide an interesting avenue for further investigation. Plans are
being made to illuminate the cathode of the AO/FNPL photo-injector with a spiral pattern using
a mask in the laser beam and to study the resulting phase space distribution after the flat beam
transformer. A future non-linear FODO channel may be in the offing.

The author would like to thank Don Edwards and Helen Edwards for many enlightening
discussions and encouragement.
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